National Journal of Physiology, Pharmacy and Pharmacology

RESEARCH ARTICLE

An *in vitro* study of antibacterial and antifungal activity of *Cynodon dactylon*

Prince Ekisha Gideon, Ramya Sugumar, Darling Chellathai David

Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu. India

Correspondence to: Ramya Sugumar, E-mail: ramya.s@sriramachandra.edu.in

Received: November 19, 2016; Accepted: December 12, 2016

ABSTRACT

Background: Plant-derived antimicrobial agents remain an arena for research to overcome the issues pertaining to microbial resistance and adverse effects associated with synthetic drugs. Aims and Objectives: The present study is being performed to evaluate the antibacterial and antifungal activity of *Cynodon dactylon*. Materials and Methods: The methanol and n-butanol extracts of *C. dactylon* were prepared. The inoculum was prepared from stock cultures containing nutrient broth (antibacterial activity) and Sabouraud dextrose broth (antifungal activity) and incubated at 37°C (24 h) and at room temperature (48 h) respectively. Antibacterial and antifungal activity of n-butanol and methanol extracts of *C. dactylon* were screened with the aid of agar disc diffusion method on Muller-Hinton agar medium and Sabouraud dextrose agar medium respectively at 1000 μg/ml, 750 μg/ml, and 500 μg/ml concentrations. The measurement of diameter of zone of inhibition was performed and compared with controls-ampicillin for antibacterial activity and amphotericin-B for antifungal activity. Results: Methanol extract of *C. dactylon* was observed to have good antibacterial activity with *Salmonella*, *Staphylococcus* sps. being susceptible, and good antifungal activity against *Aspergillus*, *Penicillium* and *Trichoderma viride* at 1000 μg/ml. The n-butanol extract also had good antibacterial activity against *Escherichia coli*, *Pseudomonas* sps., and good antifungal activity against *Aspergillus*, *Penicillium* and *T. viridae* at 1000 μg/ml. Conclusion: From this study, we found that *C. dactylon* has promising antibacterial activity against *Salmonella*, *Staphylococcus*, *E. coli*, *Pseudomonas*, and potential antifungal activity against *Aspergillus*, *Penicillium*, *T. viridae*, *Candida* sps.,

KEY WORDS: Cynodon dactylon; Antibacterial; Antifungal

INTRODUCTION

With the increasing incidence of chemotherapeutic failure and antibiotic resistance by several microbial agents, antimicrobial evaluation of medicinal plants has become the need of the hour. Plant-derived biomolecules have an added

Access this article online

Website: www.njppp.com

Quick Response code

DOI: 10.5455/njppp.2017.7.1131912122016

advantage of being less toxic in comparison to synthetic agents. $^{[1,2]}$ Also in accordance with WHO, plant-derived drugs have served as a primary healthcare need for an estimate of $\sim 80\%$ of world population. $^{[3]}$

Cynodon dactylon (L) belonging to Poaceae family is one of the most commonly occurring weeds which is a hardy, perennial, creepy grass finding a wide distribution around the globe particularly in tropical areas and warm temperature. It has been referred with various regional terminologies such as arugampullu (Tamil), garikoihallu (Kanarese), haritali (Sanskrit), durua (Marathi), garikagoddi (Telugu), durba (Bengali), and dhubkhabbal (Punjabi). The weed is fast growing, drought resistant, very tough and light green with

National Journal of Physiology, Pharmacy and Pharmacology Online 2016. © 2016 Ramya Sugumar et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), allowing third partiesto copy and redistribute the materialin any medium or for mat and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

a coarse texture and are found in short cylindrical pieces of 2-4 mm in diameter and 3-20 mm long.^[4]

C. dactylon is known to have the following medicinal properties antiseptic, analgesic, anti-inflammatory, wound healing, astringent, antioxidant, immunomodulatory, antidiabetic, and anticancer activities.^[5,6] Research related to the antimicrobial properties of this plant are minimal in the Indian scenario. Therefore, the current research work intends to screen *C. dactylon* for its antibacterial and antifungal activity.

MATERIALS AND METHODS

Collection and Authentification of Plant

C. dactylon was collected from the local area of Thiruvallur district, Chennai and was used for the study following its authentication by a botanist.

Preaparation of Plant Extract

The leaves of *C. dactylon* were washed thoroughly with distilled water, followed by drying in sunlight for 48 h.^[7] The leaves were powdered using a sterile motor and pestle. The extract was prepared using sohxlets apparatus using 100 g of powdered sample and 100 ml of methanol/n-butanol.^[8,9] The solvent extracts were evaporated under controlled pressure.

Procedure for Antibacterial Activity Assay

Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, were the bacterial species which were utilized for this study with a standard of ampicillin (20 μl/disc).

Preparation of Inoculum

Stock cultures were placed on nutrient agar Slant with a 4°C temperature maintenance. Loop full of culture from a stock culture were placed into test tubes with nutrient broth with an incubation period for 24 h at 37°C yielding active cultures for the experiment. The method of the assay was carried out by agar disc diffusion method.

Agar Disc Diffusion Method[10]

Antibacterial activity of the extracts was determined by disc diffusion method on Muller-Hinton agar (MHA) medium in comparison with standard antibiotic ampicillin (20 μ l/disc). For this, MHA medium was placed into the Petri plate and following the solidification of the medium; the bacterial suspension was placed using a sterile swab. Three different dilutions of samples were used in the following concentrations, namely, $1000 \, \mu g/ml$, $750 \, \mu g/ml$, and $500 \, \mu g/ml$. Sterile discs containing three different concentrations of samples and positive control (ampicillin) of $20 \, \mu l$ each were kept in

MHA plates and maintained at 37°C incubation for 24 h. The diameter of inhibition zone was measured to determine the antibacterial activity.

Antifungal Activity Assay

Among the various fungal species, *Candida, Aspergillus, Trichoderma viride, Penicillium* sps. were utilized for the study with amphotericin-B (20 µl/disc) taken as standard.

Preparation of Inoculum

Stock cultures were placed on Sabouraud dextrose agar (SDA) slant with a 4°C temperature maintenance. Loop full of culture from stock culture were placed into test tubes with Sabouraud dextrose broth with an incubation period for 48 h at 37°C yielding active cultures for the experiment. The method of assay was carried out by agar disc diffusion method.

Agar Disc Diffusion Method

With the help of disc diffusion method on SDA medium, the extracts were screened for antifungal activity. For this, SDA medium was placed into the Petri plate and following the solidification of the medium; the fungal suspension was placed using a sterile swab. Samples were diluted for 3 different concentrations, namely, $1000~\mu g/ml$, $750~\mu g/ml$, and $500~\mu g/ml$. Amphotericin-B was taken as positive control. Sterile discs containing three different concentrations of samples and positive control of $20~\mu l$ each were kept in SDA plates with a 24~h incubation period at $37^{\circ}C$. The diameter of inhibition zone was estimated to determine the antifungal activity.

RESULTS

The antibacterial activity of different concentrations of $C.\ dactylon$ methanol extract is depicted in Table 1. All the three concentrations of methanol extract of $C.\ dactylon$ showed good efficacy against all 5 bacterial species. However, at $1000\ \mu g/ml$ it was most effective against Salmonella and $S.\ aureus\ sps.$ exhibiting a 14 mm diameter of zone of inhibition (Figure 1).

The antibacterial activity of different concentrations of *C. dactylon* n-butanol extract is shown in Table 2. n-butanol extract of *C. dactylon* at all 3 concentrations showed good efficacy against *E. coli* and *P. aeruginosa* bacterial species. Figure 2 shows the inhibition zone diameters for different organisms, and it is maximum for *Pseudomonas* and *E. coli* species measuring 25 mm and 23 mm, respectively.

The antifungal activity of different concentrations of methanol extract of *C. dactylon* is described in Table 3. Figure 3 shows the inhibition zone diameters for different organisms. All

the three concentrations of methanol extract of C. dactylon showed good efficacy against all selected fungal species. At 1000 μ g/ml concentration, it exhibits maximum efficacy

Table 1: Susceptible bacterial organisms to methanol extract with inhibition zone diameters (antibacterial activity)

Organisms Zone of inhibition (mi			n (mm)	Antibiotic
	Concentration (µg/ml)			(1 mg/ml)
	1000	750	500	
E. coli	12	11	9	20
Salmonella sps.	14	11	10	25
Pseudomonas sps.	12	11	10	31
S. aureus	14	12	9	22
Bacillus sps.	12	12	10	22

E. coli: Escherichia coli, S. aureus: Staphylococcus aureus

Table 2: Antibacterial activity of n-butanol extract with inhibition zone diameters for different organisms

Organisms	anisms Zone of inhibitio			Antibiotic
	Con	centratio	(1 mg/ml)	
	1000	750	500	
E. coli	23	21	16	24
Salmonella spp.	-	-	-	23
Pseudomonas spp.	25	23	9	29
S.aureus	9	-	-	22
Bacillus spp.	-	-	-	22

E. coli: Escherichia coli, S. aureus: Staphylococcus aureus

Table 3: Antifungal activity of methanol extract with inhibition zone diameters for different organisms

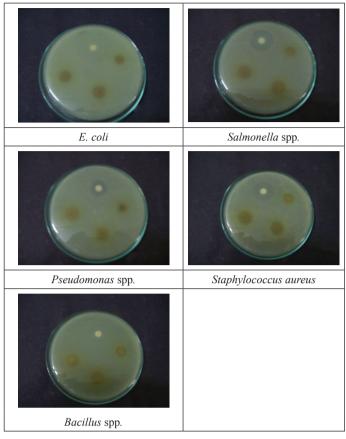
Organisms	Zone of inhibition (mm) Concentration (µg/ml)			Antibiotic (1 mg/ml)
	1000	750	500	
Aspergillus spp.	17	10	9	47
Candida spp.	9	8	-	20
Penicillium spp.	18	17	15	47
Trichoderma viride	10	9	8	46

T. viride: Trichoderma viride

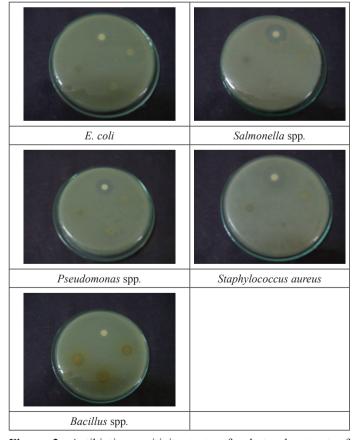
Table 4: Susceptible fungal species to n-butanol extract with inhibition zone diameters (antifungal activity)

Organisms	Zone of inhibition (mm) Concentration (µg/ml)			Antibiotic (1 mg/ml)
	1000	750	500	
Aspergillus spp.	11	9	7	47
Candida spp.	9	8	-	20
Penicillium spp.	10	9	9	46
Trichoderma viride	12	11	8	46

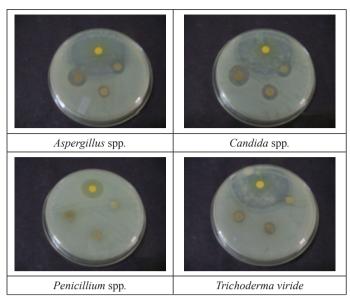
T. viride: Trichoderma viride


against *Penicillium* and *Aspergillus* sps. with 18 mm and 17 mm diameters of zone of inhibition, respectively.

The antifungal activity of different concentrations of *C. dactylon* n-butanol extract is represented in Table 4. Figure 4 shows the inhibition zone diameters for different organisms. All the three concentrations of n-butanol extract of *C. dactylon* showed good efficacy against all fungal species. n-butanol extract showed maximum activity against *T. viride* and *Aspergillus* sps. at 1000 µg/ml concentration.


DISCUSSION

In the present study, it was found that methanol extract of C. dactylon at all three concentrations, namely, $1000 \, \mu g/ml$, $750 \, \mu g/ml$, and $500 \, \mu g/ml$ had wide antibacterial spectrum and being most effective against Salmonella and S. aureus sps. at a concentration of $1000 \, \mu g/ml$. In contrast to this n-butanol extract was observed to be efficacious against E. coli and P. aeruginosa bacterial species at all the three concentrations. When evaluated for the antifungal activity, the methanol extract demonstrated maximum efficacy against Penicillium and Aspergillus sps. at $1000 \, \mu g/ml$ concentration. While the n-butanol extract showed good activity against T. viridae and Aspergillus sps at $1000 \, \mu g/ml$ concentration.


The wide antibacterial spectrum observed with all the three concentrations of methanol extract of C. dactylon is synonymous with results of similar studies in the past, and it is due to the prevalence of active principles such as polar compounds like saponins which makes it effective against a wide range of bacterial species.[11,12] The results of methanol extract showing maximum efficacy against Salmonella and S. aureus sps. at 1000 µg/ml (Figure 1) is partially homologous with the results from another study which showed that it was effective against S. aureus and P. aeruginosa. [6] Unlike the wide antibacterial spectrum of activity of methanol extract, the n-butanol extract of C. dactylon at all 3 concentrations showed good efficacy against E. coli and P. aeruginosa bacterial species which is exactly synonymous with the results of another study.[13] It is known that since the cell wall of gram-negative organisms possesses a thick murine coat, they show more antibiotic resistance than gram-positive organisms.[14-16] However, in contrast to this finding in our study, we found the n-butanol extract to be more sensitive for gram-negative organisms such as E. coli and P. aeruginosa which may be attributed to the occurrence of broad spectrum antibiotic compounds such as terpenes, flavonoids, and saponins in the extract of C. dactylon leaves which is in accordance with a previous study.[13] When explored for the antifungal activity of C. dactylon, methanol extract showed maximum efficacy against Penicillium and Aspergillus sps. which were slightly different from the results of a previous study which depicted higher efficacy against Aspergillus and Candida sps. [6] The n-butanol extract of C. dactylon showed maximum activity against T. viridae and Aspergillus sps.

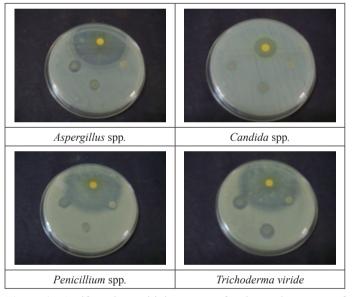

Figure 1: Antibiotic sensitivity tests of methanol extract of *Cynodon dactylon*

Figure 2: Antibiotic sensitivity tests of n-butanol extract of *Cynodon dactylon*

Figure 3: Antifungal sensitivity tests of methanol extract of *Cynodon dactylon*

Figure 4: Antifungal sensitivity tests of n-butanol extract of *Cynodon dactylon*

at $1000 \,\mu\text{g/ml}$ concentration. Previous studies on ethanol extract of *C. dactylon* have demonstrated antifungal activity attributed due to the presence of triterpenoid saponin. [17] However, to the best of our knowledge with an extensive literature review, the screening of n-butanol extract of this plant for its anti-fungal activity is lacking.

The results of our study suggested that leaves of *C. dactylon* possess significant antibacterial and antifungal activities. However, it necessitates further extensive molecular and cellular level investigations to evaluate the therapeutic effect of phytochemicals present in *C. dactylon* and to identify its mechanism of action, following which it can serve as a valuable therapeutic option for bacterial and fungal infections.

CONCLUSION

Methanol and n-butanol extracts of *C. dactylon* leaves have potential antibacterial and antifungal activity, particularly against *Salmonella*, *Staphyllococcus*, *E. coli*, *Pseudomonas*, and *Aspergillus*, *Penicillium*, *T. viridae*, *Candida* sps. respectively and may serve to play a vital role in ethnomedical practice.

REFERENCES

- Colombo ML, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res. 1996;33(2):127-34.
- 2. Dabur R, Gupta A, Mandal TK, Singh DD, Bajpai V, Gurav AM, et al. Antimicrobial activity of some Indian medicinal plants. Afr J Tradit Complement Altern Med. 2007;4:313-8.
- Arumugam N, Boobalan T, Rajeswari PR, Duraimurugan MD. Antimicrobial activity and phytochemical screening of Cynodon dactylon and Carica papaya. Res Biotechnol. 2014;5(5):21-31.
- 4. Chandel E, Kumar B. Antimicrobial activity and phytochemical analysis of *Cynodon dactylon*: A review. World J Pharm Pharm Sci. 2015;4(11):515-30.
- 5. Ashokkumar K, Selvaraj K, Muthukrishnan SD. *Cynodon dactylon* (L.) Pers: An updated review of its phytochemistry and pharmacology. J Med Plants Res. 2013;7(48):3477-83.
- 6. Kanimozhi V, Rathabai V. Evaluation of anti microbial activity of *Cynodon dactylon*. Int J Res Pharm Sci. 2012;2(2):34-43.
- 7. Ara N, Nur H. *In vitro* antioxidant activity of methanolic leaves and flowers extracts of *Lippia alba*. Res J Med Med Sci. 2009;4(1):107-10.
- 8. Grouch IJ, Smith MT, Vanstadan J, Lewis MJ, Hoad GV.

- Identification of auxim in a commercial seaweeds concentrate. J Plant Physiol. 1992;139(5):590-4.
- Matanjun P, Matanjun S, Mustapha NM, Muhammed K, Ming GH. Antioxidant activity of phenolic content of eight sps of seaweeds from the North Borneo. J Appl Phycol. 2008;20(4):367-73.
- 10. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493-6.
- 11. Singh R, Gupta A. Antimicrobial and antitumor activity of the fractionated extracts of Kulimusli (*Curculgo orchioides*). Intl J Green Pharm. 2008;2(1):34-6.
- 12. Kafaru E. Immense Help from Nature's Workshop. Lagos: Elikat Health Services; 1994. p. 31-210.
- 13. Chaudhari Y, Mody HR, Acharya VB. Antibacterial activity of *Cynodon dactylon* on different bacterial pathogens isolated from clinical samples. Int J Pharm Stud Res. 2011;2(1):16-20.
- Paz EA, Lacy RN, Bakhtiar M. The Betalactum Antibiotics Penicillin and Cephalosporin in Perspective. London: Hodder and Stongton; 1995. p. 227.
- 15. Chowdhury AA, Islam MS. Antibacterial activity of *Trema orientalis*. Dhaka Univ J Pharam Sci. 2004;3(1-2):115-7.
- Martin GJ. Ethnobotany: A Methods Manual. London: Chapman and Hall; 1995.
- 17. Li XC, ElSohly HN, Nimrod AC, Clark AM. Antifungal jujubogenin saponins from *Colubrina retusa*. J Nat Prod. 1999;62(5):674-7.

How to cite this article: Gideon PK, Sugumar R, David DC. An *in vitro* study of antibacterial and antifungal activity of *Cynodon dactylon*. Natl J Physiol Pharm Pharmacol 2017;7(4):381-385.

Source of Support: Nil, Conflict of Interest: None declared.